If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-4r-10=0
a = 1; b = -4; c = -10;
Δ = b2-4ac
Δ = -42-4·1·(-10)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{14}}{2*1}=\frac{4-2\sqrt{14}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{14}}{2*1}=\frac{4+2\sqrt{14}}{2} $
| -p^2+6p+4=0 | | 2(3x+1)=2x–7 | | 2x+15+3x-15=30 | | (3x+5)^2=9 | | 20-0.03a=0 | | 11/8=120/a(0.865+(20-0.03a)*0.5 | | 2x+20+x+5=30 | | 3y-3+(2/3)=14+(1÷3) | | 3x=2100 | | x+5x/7=840 | | 2x+18=3(x-1)=90 | | 15=u+2/5+7u-4/4 | | 4=18+5x | | 5x+6+24=7x | | 8x-1+4x-5=90 | | 29=5(v+7)-7v | | 7n+3n=28 | | (1.3X10^-7)=(x^2)/0.10 | | X(x+2)=-255 | | -6a-(-9)=5 | | 6s-5=3 | | 11=9p+6 | | 400(1.3)^x=8880 | | D(x)=50-0.5x | | 8.9(10^-7)=x^2/0.10 | | x+4=66=x+4 | | 9x^2-54x=144 | | 9x^2-54=144 | | 7(x+800)=14 | | 8.9(10^-7)=x^2/0.10-x | | 4x=-11+(-6x-9) | | z=(70-100)/15 |